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ABSTRACT

Let R be a (not necessarily semi-finite) σ-finite von Neumann algebra. We

prove that there exists a finite von Neumann algebra N so that for every

1 < p < 2, the Haagerup Lp-space associated with R embeds isomorphi-

cally into N∗. We also provide a proof of the following non-commutative

generalization of a classical result of Rosenthal: if M is a semi-finite von

Neumann algebra then every reflexive subspace of M∗ embeds isomorphi-

cally into Lr(M) for some r > 1.

1. Introduction

In recent years, Banach space structure of non-commutative Lp-spaces and their

subspaces have been studied extensively. Recent work in this line of research

can be found for instance in [13, 18, 32, 35, 36]. The recent survey article [29]

provides an up-to-date information on the latest developments.

The present paper deals with the following general Banach embedding prob-

lem: Let M and N be von Neumann algebras. When should one expect that

the corresponding Lp-spaces Lp(M) and Lp(N) are linearly isomorphic or that

Lp(M) is linearly isomorphic to a subspace of Lp(N)? It was shown in [35] that
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if M is infinite and N is finite then Lp(M) and Lp(N) are not isomorphic for

all 0 < p < ∞, p 6= 2. One of the many problems that remain open in this

direction is whether the predual of a given type-III von Neumann algebra can

be embedded (as Banach space) into the predual of a semi-finite von Neumann

algebra. We recall that a recent result of Oikhberg, Rosenthal, and Størmer [27]

shows that the answer to the isometric version of the above mentioned problem

is negative in the following sense: if M and N are von Neumann algebras with

the properties that M is semi-finite and N∗ embeds ismetrically into M∗ then

N is semi-finite.

If one however considers different indices in the Lp-spaces involved then the

situation is quite different. This is witnessed by the following rather deep iso-

metric result, due to Junge (see [18, Theorem 0.2, Theorem 0.3] and [17]):

Theorem 1.1 ([18], [17]): Let N be a semi-finite von Neumann algebra with

normal, semi-finite, faithful trace τ . There exists a finite von Neumann algebra

M with a normal, tracial, faithful state σ such that for all 0 < q < p < 2, there

exists an isometric embedding of Lp(N, τ) into Lq(M,σ).

The preceding theorem can be viewed as a non-commutative extension of a

very well-studied classical theme of embedding a (commutative) Lp-space into

another. We refer to [4] and [24, pp. 181–215] for more information on this

line of research. As in the classical case, the method of the proof in [18] is

probabilistic. Theorem 1.1 says a lot more than the classical situation. In

fact, it allows (isometric) embeddings of Lp-spaces associated with type-II∞

von Neumann algebras into Lq-spaces associated with type-II1 von Neumann

algebras.

It is a natural question to consider whether or not Theorem 1.1 can be ex-

tended to include general von Neumann algebras which are not necessarily semi-

finite. We will consider Lp-spaces associated with type-III von Neumann alge-

bras as those introduced by Haagerup in [11] (see the description in the next

section). We remark that using the general reduction to finite von Neumann

algebra due to Haagerup [12] one can easily deduce from Theorem 1.1 the fol-

lowing.

Corollary 1.2: Let N be a type-III von Neumann algebra. There exists

another von Neumann algebra W such that for all 0 < q < p < 2, there exists

an isometric embedding of Lp(N) into Lq(W ).
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Our main goal is to study whether or not the von Neumann W in the corollary

above can still be chosen to be finite (or semi-finite). This question is primar-

ily motivated by the fact that as Banach spaces, non-commutative Lp-spaces

associated with semi-finite von Neumann algebras are much closer to classical

Lp-spaces than those associated with type-III von Neumann algebras. Indeed,

several techniques from classical theory of Banach lattices and rearrangement

invariant spaces have non-commutative generalizations when working with semi-

finite von Neumann algebras. Our main result shows that for the case of isomor-

phism, the answer is positive. More precisely, we obtain the following result:

Theorem 1.3: Let N be a type-III von Neumann. There exists a finite von

Neumann algebra M such that for all 0 < q < p < 2, there exists an isomorphic

embedding of Lp(N) into Lq(M).

We emphasize that the preceding theorem deals only with isomorphic em-

beddings in contrast to the isometric results of Junge stated in Theorem 1.1

and Corollary 1.2 (see Theorem 3.1 below for details). We also note that for

1 ≤ q < p < 2, Theorem 1.3 does not extend to the case of complete isomor-

phism.

Our proof relies on the construction of Haagerup Lp-spaces as collection of

measurable operators associated with semi-finite von Neumann algebras, the

notion of strong embedding related to measure topology on non-commutative

spaces, consideration of Rademacher types, and a non-commutative general-

ization of a classical result of Rosenthal on reflexive subspaces of L1-spaces.

As application of this type of embeddings, we obtain (using a recent result of

Junge and Parcet on reflexive subspaces of preduals of von Neumann algebras)

that for any given von Neumann algebra, all reflexive subspaces of its predual

embed isomorphically into the predual of a finite von Neumann algebra (see

Theorem 3.4 below).

The paper is organized as follows. In §2, we set some basic definitions and

background on symmetric spaces of measurable operators and Haagerup Lp-

spaces along with some preliminary results. In §3, we provide the statement of

the main result and its proof. We include as an appendix a detailed treatment

of the non-commutative generalization of a classical result of Rosenthal on re-

flexive subspaces of non-commutative L1-spaces associated with semi-finite von

Neumann algebras.
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We use standard notation in Banach spaces and operator algebras. We refer

to [20, 21, 37] for background on von Neumann algebra theory and [24, 39] for

unexplained notation or terminology from Banach space theory.

2. Definitions and preliminary results

In this section, we collect some basic facts and notation that will be used

throughout the paper.

2.1. Some Banach space and Banach lattice concepts. We denote by

(rn)n≥1 the usual Rademacher sequence in [0, 1] defined by setting

rn(t) = sgn(sin 2nπt), t ∈ [0, 1], n = 1, 2, . . . .

We recall [24] that a Banach space X is said to have Rademacher type p

(respectively, Rademacher cotype q) for some 1 < p ≤ 2 (respectively, 2 ≤

q < ∞) if there exists a finite constant C such that for every finite sequence

(xi)
n
i=1 in X ,

( ∫ 1

0

∥∥∥∥
n∑

i=1

ri(t)xi

∥∥∥∥
2

X

dt

)1/2

≤ C

( n∑

i=1

‖xi‖
p
X

)1/p

,

respectively,

( n∑

i=1

‖xi‖
q
X

)1/q

≤ C

( ∫ 1

0

∥∥∥∥
n∑

i=1

ri(t)xi

∥∥∥∥
2

X

dt

)1/2

.

Usually these notions are referred to in the literature as type p and cotype

q respectively but to avoid any confusion with the notion of types for von

Neumann algebras, we will keep the term “Rademacher” throughout the paper.

The smallest such constant C is called the Rademacher type p constant

(respectively, Rademacher cotype q constant) of X .

For 0 < α < ∞, a quasi-Banach lattice E is said to be α-convex if there

exists a constant C such that for every finite sequence (xi)
n
i=1 in E,

∥∥∥∥
( n∑

i=1

|xi|
α

)1/α∥∥∥∥
E

≤ C

( n∑

i=1

‖xi‖
α
E

)1/α

,

The least of such constant C is called the α-convexity constant of E. The

quasi-Banach lattice E is said to satisfy a lower q-estimate if there exists a
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positive constant K > 0 such that for all finite sequence (xi)
n
i=1 of mutually

disjoint elements of E,

( n∑

i=1

‖xi‖
q
E

)1/q

≤ K

∣∣∣∣
n∑

i=1

xi

∣∣∣∣
E

.

The quasi-Banach lattice E is said to be order continuous if for every

downward directed set (xi)i∈I in E with
∧
i∈I xi = 0, limi ‖xi‖ = 0. These

notions will be used repeatedly in the sequel.

2.2. Non-commutative symmetric spaces. Assume that M is a semi-finite

von Neumann algebra on a Hilbert space H, equipped with a distinguished

normal faithful semi-finite trace τ . If we set the definition ideal

m(τ) :=

{ n∑

k=1

xkyk : n ∈ N,

n∑

k=1

τ(x∗kxk) <∞,

n∑

k=1

τ(yky
∗
k) <∞

}

then m(τ) is dense in M for the weak operator topology and for 0 < p < ∞,

the non-commutative Lp-space associated with the pair (M, τ) and denoted by

Lp(M, τ) is defined as the completion of m(τ) with respect to the (quasi-) norm

∥∥x
∥∥
p

=
(
τ(|x|p)

)1/p

(here |x| = (x∗x)1/2 is the usual modulus of x). When 1 ≤ p < ∞, then

Lp(M, τ) is a Banach space, while for 0 < p < 1, Lp(M, τ) is only a p-Banach

space.

It is now well-known that Lp(M, τ)’s can be realized as spaces of unbounded

operators on H. We recall the basic setup for further use. The identity element

of M is denoted by 1 and we denote by P(M) the complete lattice of all (self-

adjoint) projections in M. A closed densely defined operator a on H is said to

be affiliated with M if au = ua for all unitary u in the commutant M′ of M.

If a is a densely defined self-adjoint operator on H, and if a =
∫ ∞

−∞
sdeas is its

spectral decomposition, then for any Borel subset B ⊆ R, we denote by χB(a)

the corresponding spectral projection
∫ ∞

−∞
χ
B(s)deas . A closed densely defined

operator a on H affiliated with M is said to be τ-measurable if there exists a

number s ≥ 0 such that τ(χ(s,∞)(|a|)) <∞.

The set of all τ -measurable operators will be denoted by M̃. The set M̃ is

a ∗-algebra with respect to the strong sum, the strong product, and the adjoint
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operation [26]. For ε, δ > 0, let

N(ε, δ) =
{
x ∈ M̃ : for some p ∈ P(M), ‖xp‖ < ε and τ(1 − p) ≤ δ

}
.

The system {N(ε, δ); ε, δ > 0} forms a fundamental system of neighborhoods of

the origin of the vector space M̃ and the translation-invariant topology induced

by this system is called the measure topology. Equipped with the measure

topology, M̃ is a complete topological *-algebra. These facts can be found in

[26, 38]. Measure topology plays a very important role in this paper.

We recall the notion of generalized singular value function. For x ∈ M̃ and

t > 0, we define

µt(x) = inf
{
s ≥ 0 : τ(χ(s,∞)(|x|)) ≤ t

}
, for t ≥ 0.

The function t 7→ µt(x) from the interval [0, τ(1)) to [0,∞] is called the gen-

eralized singular value function of x. We refer the reader to [9] for an in

depth study of µ(·). We recall that if M = L∞(R+), then µ(f) is precisely

the classical decreasing rearrangement of the function |f |. We also note that a

sequence (xn)n≥1 in M̃ converges to 0 for the measure topology if and only if

µt(xn) →n 0 for all t > 0.

To describe the general scheme of construction of general non-commutative

spaces, we recall some basic definitions from general theory of rearrangement

invariant spaces. We denote by L0(R+) the space of all C-valued Lebesgue

measurable functions defined on R+. A Banach space (E, ‖ · ‖E), where E ⊂

L0(R+), is called rearrangement invariant Banach function space if it

follows from f ∈ E, g ∈ L0(R+) and µ(g) ≤ µ(f) that g ∈ E and ‖g‖E ≤ ‖f‖E.

Furthermore, (E, ‖ · ‖E) is called symmetric Banach function space if it

has the additional property that f, g ∈ E and g ≺≺ f imply that ‖g‖E ≤ ‖f‖E.

A symmetric Banach function space E is said to be fully symmetric if f ∈

E, g ∈ L0(R+) and g ≺≺ f implies g ∈ E and ‖g‖E ≤ ‖f‖E. Here g ≺≺ f

denotes the submajorization in the sense of Hardy–Littlewood–Polya:
∫ t

0

µs(g) ds ≤

∫ t

0

µs(f) ds, for all t > 0.

We refer the reader to [2, 24] for any unexplained terminology from the general

theory of rearrangement invariant function spaces and symmetric spaces.

Definition 2.1: Let (E, ‖ · ‖E) be a symmetric Banach function space on the

interval [0, τ(1)). We define the symmetric space of measurable operators
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E(M, τ) by setting:

E(M, τ) = {x ∈ M̃ : µ(x) ∈ E} and

‖x‖E(M,τ) = ‖µ(x)‖E , for x ∈ E(M, τ).

Equipped with ‖ · ‖E(M,τ), the space E(M, τ) is a Banach space. It is often

referred to as the noncommutative analogue of the function space E. Also, with

obvious modifications, Definition 2.1 can be extended to include the case of some

symmetric quasi-Banach function spaces (see [41] for details). More precisely,

Definition 2.1 extends to quasi-Banach symmetric function spaces which are

α-convex (with constant 1) for some 0 < α ≤ 1. In this case E(M, τ) is only a

α-Banach space and as in the case of function spaces, the inclusions

Lα(M, τ) ∩M ⊂ E(M, τ) ⊂ Lα(M, τ) + M

hold with continuous embeddings (here Lα(M, τ) ∩ M (respectively,

Lα(M, τ) + M) is equipped with the usual intersection (respectively, sum)

(quasi-) norm of two (quasi-) Banach spaces). Extensive discussions on vari-

ous properties of such spaces can be found in [5, 6, 29, 41]. In particular, if

E = Lp[0, τ(1)), for 0 < p < ∞, then E(M, τ) coincides with the noncommu-

tative Lp-space associated with the pair (M, τ). Besides the Lp-spaces, Lorentz

spaces play crucial role in our proofs. We collect below some definitions and

basic facts about Lorentz spaces for further use.

For 0 < p <∞, 0 < q ≤ ∞, and I = [0, 1] or R+, the Lorentz function space

Lp,q(I) is the space of all f ∈ L0(I) for which ‖f‖p,q <∞, where

(2.1) ‖f‖p,q :=





( ∫
I
µqt (f) d(tq/p)

)1/q
if q <∞,

sup
t∈I

t1/pµt(f) if q = ∞.

Clearly, Lp,p(I) = Lp(I) for any 0 < p <∞. It is known that if 1 ≤ q ≤ p <∞,

then (2.1) defines a norm under which Lp,q(I) is a separable rearrangement

invariant Banach function space. For the other cases, (2.1) defines only a quasi-

norm on Lp,q(I) (see, for instance, [24]). If 1 < p ≤ ∞, the space Lp,∞(I)

equipped with the equivalent Calderon norm ‖ · ‖(p,∞) given by

∥∥f
∥∥

(p,∞)
:= sup

t∈I

{
t1/p−1

∫ t

0

µs(f) ds

}
, f ∈ Lp,∞(I),
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is a symmetric Banach function space on I with the Fatou property. This norm

will be used in the sequel. Noncommutative Lorentz spaces can be defined

according to Definition 2.1.

For 1 < p < ∞ and 1/p+ 1/q = 1, the following duality will be used in the

sequel,

(2.2)
(
Lp,1(M, τ)

)∗
= Lq,∞(M, τ), (with equivalent norms).

All interpolation results involving (classical) Lorentz spaces transfer verbatim

to the noncommutative analogs (see, for instance, [29, Corollary 2.2, p. 1467]).

For x ∈ M̃, the right (respectively, left) support projections of x are denoted

by r(x) (respectively, l(x)).

Definition 2.2: (i) Two operators x, y ∈ M̃ are said to be disjoint if they have

disjoint right and left supports: r(x)r(y) = 0 and l(x)l(y) = 0.

(ii) A sequence (xn)n≥1 in M̃ is called disjoint if the xn’s are pairwise

disjoint.

(iii) A sequence (xn)n≥1 in E(M, τ) is called almost disjoint if there is a

disjoint sequence (x′n)n≥1 such that limn→∞ ‖xn − x′n‖E(M,τ) = 0.

We remark that if (xn)n≥1 is an almost disjoint basic sequence in E(M, τ)

then (xn)n≥1 is equivalent to a disjointly supported sequence in the function

space E. A proof of this fact can be found in [30].

The next concept plays a very crucial role throughout the paper.

Definition 2.3: Let E be a symmetric quasi-Banach function space on the in-

terval [0, τ(1)). We say that a subspace X of E(M, τ) is strongly embedded

into E(M, τ) if the ‖ · ‖E(M,τ)-topology and the measure topology coincide on

X .

Proposition 2.4 ([30, Proposition 3.3]): Let E be a symmetric quasi-Banach

function space on [0, τ(1)) that is order continuous. Suppose that E is α-

convex with constant 1 for some 0 < α ≤ 1 and satisfies a lower q-estimate

with constant 1 for some q ≥ 1. If X is a subspace of E(M, τ) then one of the

following statements holds:

(i) X is strongly embedded into E(M, τ);

(ii) X contains a normalized almost disjoint sequence.
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We should note that if M is finite then the two alternatives in Proposition 2.4

are exclusive but when M is infinite, it is possible to have disjointly supported

basic sequence whose closed linear span is strongly embedded.

The next result shows that when E is order continuous a large class of sub-

spaces of E(M, τ) can be embedded into Lp(M, τ) for appropriate values of p.

This plays an important role in our proof in the next section.

Proposition 2.5: Suppose that E is an order continuous and α-convex sym-

metric quasi-Banach function space on R+ and assume that E satisfies a lower

q-estimate with constant 1. If Y is a separable subspace of E(M, τ) then either:

(i) Y contains an almost disjoint basic sequence; or

(ii) Y embeds isomorphically into Lα(M ⊕∞ M, τ ⊕∞ τ). In particular, if

E is an order continuous symmetric Banach function space of R+ then Y

embeds isomorphically into M∗ ⊕1 M∗.

Proof. Since Y is separable, we may assume without loss of generality that M

is σ-finite. Indeed, choose a mutually orthogonal family (fi)i∈I of projections

in M with
∑

i∈I fi = 1 for the strong operator topology and τ(fi) < ∞ for

all i ∈ I. Let {yn : n ≥ 1} be a countable dense subset of the unit ball of Y .

Then using similar argument as in [41], one can get an at most countable subset

(fk)k∈N of (fi)i∈I such that for each fi outside of (fk)k∈N, fiyn = ynfi = 0 for

every n ≥ 1. Let e =
∑
k∈N

fk (for the strong operator topology). Then e is

countably decomposable and therefore eMe is σ-finite. Since eyn = yne = yn

for every n ≥ 1, it follows that Y ⊂ Lp(eMe). Replacing M by eMe and τ

by its restriction on eMe, we may assume that e = 1 and thus we can assume

that M is σ-finite.

Suppose that Y does not contain any almost disjoint basic sequence. Then

by Proposition 2.4, Y is strongly embedded into E(M, τ). Choose a mutually

orthogonal countable family (fk)k∈N of finite projections in M with τ(fk) <∞

for every n ≥ 1 described above and for each n ≥ 1, set

(2.3) en :=

n∑

k=1

fk.

Then en ↑n 1 and τ(en) <∞ for every n ≥ 1. Define the following operator

Θn : E(M, τ) → E(M⊕∞ M, τ ⊕∞ τ)
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as follows: if x ∈ E(M, τ), then

Θn(x) = (enx, xen).

We note first that operation is well-defined. Indeed, for x ∈ E(M, τ), is it easy

to verify that the operator (enx, xen) is τ ⊕∞ τ -measurable (as an unbounded

operator on H⊕2H). Moreover, from the definition of generalized singular value

function, for t > 0 and a τ ⊕∞ τ -measurable operator (a, b) then

µt
(
(a, b)

)
= inf

{
s ≥ 0 : τ(χ(s,∞)(|a|)) + τ(χ(s,∞)(|b|)) ≤ t

}

and, therefore,

(2.4) max{µt(a);µt(b)} ≤ µt
(
(a, b)

)
.

Moreover, since µt
(
(a, 0)

)
= µt(a) and µt

(
(0, b)

)
= µt(b), it follows that

(2.5) µ
(
(a, b)

)
≺≺ µ(a) + µ(b).

Thus (2.4) and (2.5) imply that

(2.6)
max{‖a‖E(M,τ); ‖b‖E(M,τ)} ≤ ‖(a, b)‖E(M⊕∞M,τ⊕∞τ)

≤
(
‖a‖αE(M,τ) + ‖b‖αE(M,τ)

)1/α
.

From these facts, it follows that for n ≥ 1,

‖Θn(x)‖E(M⊕∞M,τ⊕∞τ) ≤ 2‖x‖E(M,τ) ∀x ∈ E(M, τ),

which verifies that Θn is well-defined and bounded. The next step is to show

that when restricted to Y , one of the Θn’s must be an isomorphism.

Lemma 2.6: There exists n0 ∈ N so that the linear subspace Θn0
(Y ) is a

(strongly embedded) closed subspace of E(M⊕∞M, τ⊕∞ τ) and is isomorphic

to Y .

Assume by way of contradiction that for every n ≥ 1, Θn|Y is not an iso-

morphism. We will construct a sequence (xk)k≥1 in the unit sphere of Y and a

strictly increasing sequence of integers (nk)k≥1 satisfying

(2.7)
∥∥xk − (enk

− enk−1
)xk(enk

− enk−1
)
∥∥α ≤ 2−k.

This would be in contradiction with the initial assumption that Y does not con-

tain any almost disjoint basic sequence. The construction is done by induction.

Fix x1 ∈ X with ‖x1‖ = 1 and choose n1 ∈ N so that
∥∥x1 − en1

x1en1

∥∥ ≤ 2−1.

Suppose that {x1, . . . , xk−1} and n1 < n2 < · · · < nk−1 were chosen that satisfy
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(2.7). Since Θnk−1
|Y is not an isomorphism, there exists xk ∈ Y with ‖xk‖ = 1

and ‖Θnk−1
(xk)‖α ≤ 2−(k+2). A fortiori, (2.6) gives ‖enk−1

xk‖α + ‖xkenk1
‖α ≤

2−(k+1). We can choose nk > nk−1 so that ‖xk − enk
xkenk

‖α ≤ 2−(k+1) (this

is possible according to [7, Proposition 1.1] since E is order continuous). Com-

bining the last two inequalities, we conclude

‖xk − (enk
−enk−1

)xk(enk
− enk−1

)‖α

≤‖xk − enk
xkenk

‖α + ‖enk
xkenk−1

‖α + ‖enk−1
xk(enk

− enk−1
)‖α

≤‖xk − enk
xkenk

‖α + ‖xkenk−1
‖α + ‖enk−1

xk‖
α

≤2−(k+1) + 2−(k+1) = 2−k.

The construction is complete. Hence, n0 can be chosen so that Θn0
|Y is an

isomorphism. The fact that Θn0
(Y ) is strongly embedded follows immediately

from Proposition 2.4 since it does not contain any basic sequence equivalent to

a disjointly supported sequence in E. This proves the lemma.

We conclude the proof by showing that Θn0
(Y ) is a subspace Lα(M ⊕∞

M, τ ⊕∞ τ). This follows from Hölder’s inequality. Indeed, since τ(en0
) < ∞,

en0
∈ Lα(M, τ) ∩M. It follows that for every x ∈ E(M, τ),

‖Θn0
(x)‖αα = ‖en0

x‖αα + ‖xen0
‖αα

≤ ‖en0
‖αLα(M,τ)∩M

(
‖en0

x‖αLα(M,τ)+M + ‖xen0
‖αLα(M,τ)

)

≤ τ(en0
)
(
‖en0

x‖αE(M,τ) + ‖xen0
‖αE(M,τ)

)

≤ 2τ(en0
)‖Θn0

(x)‖αE(M⊕∞M,τ⊕∞τ)

≤ 4τ(en0
)‖x‖αE(M,τ).

This shows that Θn0
(Y ) ⊂ Lα(M ⊕∞ M, τ ⊕∞ τ). Since Θn0

(Y ) is strongly

embedded in E(M⊕∞ M, τ ⊕∞ τ), it is also a closed subspace of Lα(M⊕∞

M, τ ⊕∞ τ). The proof is complete.

Remark 2.7: In the preceding proposition the use of direct sum can be avoided

if either of the following two cases is satisfied:

(i) M is finite and τ is a normal tracial state, or

(ii) M is a semi-finite properly infinite von Neumann algebra.

The first case is trivial since when M is finite, then it follows that whenever

E is α-convex we have the inclusion E(M, τ) ⊂ Lα(M, τ). In this case, if Y is

a subspace of E(M, τ) that is strongly embedded then since the ‖ · ‖α-topology
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is weaker than ‖ · ‖E(M,τ)-topology and is stronger than the measure topology,

strong embedding implies that the two norms ‖·‖α and ‖·‖E(M,τ) are equivalent

when restricted to Y .

The second case follows from the general fact that if M is properly infinite

then M⊕∞M is isomorphic to M. Indeed, there exist two isometries u1, u2 in

M, such that u1u
∗
1 and u2u

∗
2 are orthogonal projections with u1u

∗
1 + u2u

∗
2 = 1.

Define

Φ : M → M⊕∞ M by Φ(x) = (u∗1x, u
∗
2x)

and

Ψ : M⊕∞ M → M by Ψ(x, y) = u1x+ u2x.

It is clear that Φ ◦ Ψ = IdM⊕∞M and Ψ ◦ Φ = IdM. The same maps can be

used to verify that if 0 < p < ∞ then Lp(M⊕∞ M, τ ⊕∞ τ) is isomorphic to

Lp(M, τ).

An immediate application of Proposition 2.5 is the following known form of

a noncommutative extension of the classical Kadec–Pe lczynski dichotomy (see

also [30, 32]).

Corollary 2.8: Assume that E is an order continuous symmetric Banach

function space on R+ and E(M, τ) is of Rademacher type 2. Then every

subspace of E(M, τ) either contains an almost disjoint basic sequence or is

isomorphic to a Hilbert space.

Proof. Let X be a subspace of E(M, τ). If X does not contain any almost dis-

joint basic sequence then Proposition 2.5 implies that X embeds isomorphically

into L1(M ⊕∞ M, τ ⊕∞ τ). Therefore X is of Rademacher cotype 2. Since

E(M, τ) is of Rademacher type 2, the conclusion that X is isomorphic to a

Hilbert space follows from [23].

2.3. Haagerup Lp-spaces. There are several equivalent methods of construct-

ing noncommutative Lp-spaces associated with general von Neumann algebra

(see, e.g., [1, 11, 14, 15, 22, 31]). In this paper we will use Haagerup’s construc-

tion ([11, 38]). Let us now provide a brief description of Haagerup’s theory.

Assume that R is a general von Neumann algebra (not necessarily semi-finite)

on a Hilbert space H . For 0 < p < ∞, noncommutative Lp-spaces associ-

ated with R are defined as spaces of measurable operator relative to a larger

semi-finite von Neumann algebra.
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Fix a normal faithful semi-finite weight ϕ on R and let (σϕt )t∈R be the one-

parameter modular automorphism group associated with ϕ. We consider the

crossed product U := R ⋊σϕ R, which is a von Neumann subalgebra of the

algebra B(L2(R, H)) generated by

π(x)(ξ(t)) = σϕ−t(x)(ξ(t)) and λ(s)(ξ(t)) = ξ(t− s)

for t ∈ R and ξ ∈ L2(R, H). If W (s) is the unitary operator on L1(R, H) defined

by

W (s)(ξ(t)) = e−istξ(t),

then the dual action θ on U is given by

θs(x) = W (s)xW (s)∗, x ∈ U .

The von Neumann algebra R can be identified with the subalgebra of U

π(R) =
{
x ∈ U : θs(x) = x for all s ∈ R

}
.

Moreover, it is known that U is semi-finite and is equipped with its canonical

normal faithful semi-finite trace τ satisfying,

τ ◦ θs = e−sτ, s ∈ R.

As above, the algebra of τ -measurable operators associated to the pair (U , τ)

is denoted by Ũ . For 0 < p < ∞, the Haagerup Lp-space associated with R is

defined as a subset of the collection of τ -measurable operators by setting

Lp(R, ϕ) :=
{
x ∈ Ũ : θs(x) = e−s/px, s ∈ R

}
.

This is clearly a closed self-adjoint linear subspace of Ũ and the norm is defined

based on a known fact from [11, 38] that there is a linear homeomorphism

ψ 7→ hψ from R∗ onto L1(R, ϕ). One can define a distinguished positive linear

functional Tr on L1(R, ϕ) by setting

Tr(hψ) = ψ(1), ψ ∈ R∗.

Let 0 < p < ∞ and x ∈ Lp(R, ϕ). If x = u|x| is the polar decomposition

of x, then u ∈ R and |x| ∈ Lp(R, ϕ). In particular, |x|p ∈ L1(R, ϕ). The

(quasi-)norm on Lp(R, ϕ) is defined by:

‖x‖p := (Tr(|x|p))
1/p

, for x ∈ Lp(R, ϕ).

Equipped with ‖ · ‖p, the space Lp(R, ϕ) is a Banach space (respectively, a

p-Banach space) when 1 ≤ p < ∞ (respectively, 0 < p < 1). Some remarks
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are in order: (i) the space Lp(R, ϕ) is independent of the particular choice of

the normal faithful semi-finite weight ϕ on R (used in the construction of the

crossed product) up to isometry so we will simply write Lp(R) for Lp(R, ϕ),

(ii) the functional Tr on R and the canonical trace τ on U are quite different,

(iii) when R is semi-finite then the Haagerup space Lp(R) is isometric to the

usual noncommutative Lp-space described previously. The reader is referred to

[11, 38] for full details of Haagerup’s theory.

It is shown in [9, Lemma 4.8] that if x ∈ Lp(R), 0 < p <∞, then

(2.8) µt(x) = t−1/p‖x‖p, t > 0,

where the generalized singular value function is taken relative to the pair (U , τ).

This implies, in particular, that for any sequence in Lp(R), the ‖·‖p-convergence

and the convergence in measure relative to Ũ coincide. This fact can also be

found in [38, p. 40]. For later reference, we record the next proposition which

is a direct consequence of (2.8) and the definition of weak-Lp-spaces. It will

be used as a first step in reducing general Lp-spaces to those associated with

semi-finite von Neumann algebras. This will be the only fact about Haagerup

Lp-spaces that we will need for the rest of this paper.

Proposition 2.9: If 0 < p < ∞ then the Haagerup space Lp(R) is a closed

subspace of the space Lp,∞(U , τ) associated with the semi-finite von Neumann

algebra (U , τ). Moreover,

‖x‖p = ‖x‖Lp,∞(U ,τ),

for all x ∈ Lp(R).

3. Embeddings of Haagerup Lp-spaces when 0 < p < 2

The principal result of this paper is the following theorem which can be viewed

as extension of Junge’s result to Haagerup Lp-spaces.

Theorem 3.1: Let R be a σ-finite von Neumann algebra (not necessarily semi-

finite). There exists a finite von Neumann algebra M equipped with a normal,

tracial, faithful state τ such that for every 0 < r < p < 2, there exists an iso-

morphic embedding of the Haagerup space Lp(R) into Lr(M, τ). In particular

for 1 < p < 2, then Lp(R) embeds as Banach space into M∗.

The following proposition is the decisive step toward our main result.
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Proposition 3.2: Let 0 < q < p < 2 and W be a σ-finite type-III von Neu-

mann algebra. There exists a semi-finite von Neumann algebra N equipped

with a normal faithful semi-finite trace σ so that whenever X is a subspace of

Lq(W) satisfying one of the following conditions:

(i) 1 ≤ q < p < 2 and X is a Banach space of Rademacher type p, or

(ii) 0 < q < p < 1 and X is a p-Banach space.

Then for every 0 < r < q, X is isomorphic to a subspace of Lr(N , σ).

Proof. Let U = W⋊σϕ R be the crossed product of W by the modular automor-

phism group (σϕt )t∈R associated with a fixed faithful normal state ϕ. Denote by

τ the canonical trace on the semi-finite von Neumann algebra U as described in

the previous section. If X is a subspace of Lq(W) then from Proposition 2.9, X

is a closed subspace of Lq,∞(U , τ). Moreover, (2.8) implies that X is strongly

embedded into Lq,∞(U , τ). Our aim is to prove that X embeds isomorphically

into Lr(U , τ) when 0 < r < q. In particular, the semi-finite von Neumann

algebra in the statement of the proposition can be taken to be N := U and

σ := τ .

The argument consists of two steps. First, we embed X into a symmetric

(quasi-) Banach space of measurable operators with order continuous norm and

second, we show that with such embedding Proposition 2.5 above applies.

For the first step, fix 0 < p1 < q < p2 < p < 2. We observe from [3,

Theorem 5.3.1] that the Lorentz space Lq,∞(R+) is an interpolation space

of the interpolation couple (Lp1(R+), Lp2(R+)). In particular, Lq,∞(R+) ⊂

Lp1(R+) + Lp2(R+). Here Lp1(R+) + Lp2(R+) is the symmetric (quasi-)

Banach function space on R+ equipped with the usual sum (quasi-) norm.

Therefore Lq,∞(U , τ) ⊂ Lp1(U , τ) + Lp2(U , τ). Hence X can be viewed as a

strongly embedded subspace of the symmetric space of measurable operators

Lp1(U , τ) + Lp2(U , τ).

We observe that the property of X (being either of Rademacher type strictly

larger than q or being a p-Banach space) implies that it does not contain any

basic sequence equivalent to the unit vector basis of lq and therefore should

not contain any almost disjoint sequence in the sense of Lq(W) (i.e considering

support projections from W). The crucial property of X is that the same

property is valid when it is viewed as a subspace of Lp1(U , τ) + Lp2(U , τ). We

state this in the next lemma.



16 N. RANDRIANANTOANINA Isr. J. Math.

Lemma 3.3: The space X does not contain any basic sequence equivalent to a

mutually disjoint sequence in Lp1(U , τ) + Lp2(U , τ).

The argument below for the verification of Lemma 3.3 is based on consid-

eration of Rademacher types. Assume the contrary: there exists a normalized

disjointly supported sequence (yn)n≥1 in Lp1(U , τ)+Lp2(U , τ) that is equivalent

to a sequence in X . Set Y := span{yn;n ≥ 1}. Then by isomorphism either Y

is a Banach space of Rademacher type p or Y is a p-Banach space according to

1 < p < 2 or 0 < p < 1.

For each n ≥ 1, let qn := l(yn) and en := r(yn) be the left and right support

projection of yn respectively. Then both (qn)n≥1 and (en)n≥1 are mutually

disjoint sequences of projections and for every n ≥ 1, yn = qnynen. For any

finite sequence of scalars (an)n≥1,

∣∣∣∣
∑

n≥1

anyn

∣∣∣∣
2

=

( ∑

n≥1

āneny
∗
nqn

)( ∑

n≥1

anqnynen

)

=
∑

n≥1

|an|
2eny

∗
nqnynen

=

∣∣∣∣
∑

n≥1

an|yn|

∣∣∣∣
2

.

Therefore, (yn)n≥1 is equivalent to the basic sequence (|yn|)n≥1. Note that

(|yn|)n≥1 is left and right disjointly supported by the sequence (en)n≥1. For each

n ≥ 1, the semi-finiteness of en guaranties the existence of an increasing family

{e
(n)
β }β of projections in the von Neumann algebra enUen with τ(e

(n)
β ) < ∞

for every β and satisfies 0 ≤ e
(n)
β ↑β en. Since Lp1(R+) + Lp2(R+) is order-

continuous, it follows that

lim
β

∥∥e(n)
β |yn|e

(n)
β − |yn|

∥∥
Lp1(U ,τ)+Lp2(U ,τ)

= 0.

Thus for any given ε > 0, a projection ẽn ≤ en can be chosen such that τ(ẽn) <

∞ and

(3.1)
∥∥ẽn|yn|ẽn − |yn|

∥∥
Lp1(U ,τ)+Lp2(U ,τ)

≤ ε.
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We observe that (ẽn)n≥1 is a sequence of mutually disjoint of finite projections

and if (an)n≥1 is a finite sequence of scalars, then we have
∥∥∥∥

∑

n≥1

anẽn|yn|ẽn

∥∥∥∥
Lp1(U ,τ)+Lp2(U ,τ)

≤

∥∥∥∥
∑

n≥1

an|yn|

∥∥∥∥
Lp1(U ,τ)+Lp2(U ,τ)

=

∥∥∥∥
∑

n≥1

anyn

∥∥∥∥
Lp1(U ,τ)+Lp2(U ,τ)

.

(3.2)

The first inequality follows from the fact that if ẽ :=
∑
n≥1 ẽn for the strong

operator topology, then
∑
n≥1 anẽn|yn|ẽn = ẽ

(∑
n≥1 an|yn|

)
ẽ.

If α1 = 0 and αn =
∑n

i=1 τ(ẽi) <∞, set fn := µ(·)−αn−1
(ẽn|yn|ẽn) for n ≥ 1.

The sequence of positive functions (fn)n≥1 is disjointly supported in Lp1(R+)+

Lp2(R+) and (as basic sequence) is equivalent to the sequence (ẽn|yn|ẽn)n≥1.

Therefore (3.2) implies

(3.3)

∥∥∥∥
∑

n≥1

anfn

∥∥∥∥
Lp1(R+)+Lp2(R+)

≤

∥∥∥∥
∑

n≥1

anyn

∥∥∥∥
Lp1(U ,τ)+Lp2(U ,τ)

.

Fix δ > 0 and consider f (1) and f (2) in Lp1(R+) and Lp2(R+) respectively

with:

(1)
∑

n≥1 anfn = f (1) + f (2);

(2) ‖f (1)‖p1 + ‖f (2)‖p2 ≤ ‖
∑
n≥1 anfn‖Lp1(R+)+Lp2(R+) + δ.

Denote by (An)n≥1 the mutually disjoint sequence of measurable subsets of R+

consisting of supports of (fn)n≥1. Then for n ≥ 1, anfn = χAn
f (1) + χAn

f (2)

and item (2) above combined with (3.3) imply the inequality,

( ∑

n≥1

‖χAn
f (1)‖p1p1

)1/p1

+

( ∑

n≥1

‖χAn
f (2)‖p2p2

)1/p2

≤

∥∥∥∥
∑

n≥1

anyn

∥∥∥∥
Lp1(U ,τ)+Lp2(U ,τ)

+ δ.

Since p1 ≤ p2, we get
( ∑

n≥1

(‖χAn
f (1)‖p1 + ‖χAn

f (2)‖p2)p2
)1/p2

≤

∥∥∥∥
∑

n≥1

anyn

∥∥∥∥
Lp1(U ,τ)+Lp2(U ,τ)

+ δ.

A fortiori,
( ∑

n≥1

‖anfn‖
p2
Lp1(R+)+Lp2(R+)

)1/p2

≤

∥∥∥∥
∑

n≥1

anyn

∥∥∥∥
Lp1(U ,τ)+Lp2(U ,τ)

+ δ.



18 N. RANDRIANANTOANINA Isr. J. Math.

Since δ is arbitrary, we obtain that
( ∑

n≥1

‖anfn‖
p2
Lp1(R+)+Lp2(R+)

)1/p2

≤

∥∥∥∥
∑

n≥1

anyn

∥∥∥∥
Y

.

Recall that since (yn)n≥1 is disjointly supported, it is an unconditional basic

sequence and hence,
( ∑

n≥1

‖anfn‖
p2
Lp1(R+)+Lp2(R+)

)1/p2

≤

(∫ 1

0

∥∥∥∥
∑

n≥1

anrn(t)yn

∥∥∥∥
1/2

Y

)1/2

.

Since Y is either a Banach space of Rademacher type p or is p-convex, there

exists a constant T (Y, p) such that

(3.4)

( ∑

n≥1

‖anfn‖
p2
Lp1(R+)+Lp2(R+)

)1/p2

≤ T (Y, p)

( ∑

n≥1

‖anyn‖
p
Y

)1/p

.

The fact that (yn)n≥1 is a normalized sequence and ‖fn‖Lp1(R+)+Lp2(R+) ≥

1 − ε (see (3.1) above) with (3.4) implies that for any finite sequence (an)n≥1

of scalars,

(1 − ε)‖(an)‖lp2 ≤ T (Y, p)‖(an)‖lp .

Taking limit as ε→ 0, we conclude that

‖(an)‖lp2 ≤ T (Y, p)‖(an)‖lp .

This is a contradiction since p2 < p < 2. The lemma is verified.

To conclude the proof of Proposition 3.2, we consider two cases.

• Assume that 0 < q ≤ 1. Then 0 < p1 < 1 and the symmetric quasi-

Banach function space Lp1(R+) + Lp2(R+) is p1-convex. Now since X does

not contain any almost disjoint basic sequence from Lp1(U , τ) + Lp2(U , τ),

Proposition 2.5 applied to X and the symmetric (quasi-) Banach function

space E = Lp1(R+) + Lp2(R+). Therefore, X embeds isomorphically into

Lp1(U ⊕∞ U , τ ⊕∞ τ). Moreover, the von Neumann algebra U is semi-finite

and properly infinite (see, for instance, [21, p. 985]). It follows from Remark 2.7

that X embeds isomorphically into Lp1(U , τ). Taking p1 = r, the proof is

complete for the case 0 < q ≤ 1.

• For the case 1 < p < 2, we can take p1 = 1 and deduce that X embeds

isomorphically into L1(U , τ). Moreover, X is reflexive. We can invoke Theo-

rem A.2 from the appendix below to conclude that X embeds isomorphically

into Lr(U , τ).
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Combining the two cases, the proof of Proposition 3.2 is complete.

Proof of Theorem 3.1. We may assume without loss of generality that R is a

type-III von Neumann algebra. The proof combines Junge’s result stated in

Theorem 1.1 together with its type-III counterpart (Corollary 1.2) and Propo-

sition 3.2.

Fix 0 < r < s < s + ε < p < 2. By Corollary 1.2, there exists a von

Neumann algebra W so that Lp(R) embeds isometrically into Ls+ε(W). Let

X be a subspace of Ls+ε(W) isometric to Lp(R). If 1 ≤ p < 2 then X is a

Banach space of Rademacher type p > s+ ε (see [8]) and if 0 < p < 1 then X is

a p-Banach space. Moreover, as R is σ-finite, Lp(R) is separable and so is X .

Hence, Proposition 3.2 applies to X and Ls+ε(W). There exists a semi-finite

von Neumann algebra N equipped with a semi-finite trace σ so that X embeds

isomorphically into Ls(N , σ). The conclusion follows from another application

of Theorem 1.1 to the semi-finite von Neumann algebra N . There exists a finite

von Neumann algebra M equipped with a faithful normal tracial state τ so

that Ls(N , σ) embeds isometrically into Lr(M, τ). Thus combining all three

isomorphisms above, we can conclude that Lp(R) embeds isomorphically into

Lr(M, τ). The proof is complete.

We remark that the embedding in Theorem 3.1 only deals with isomorphism.

We do not know if one can obtain a similar result for isometric embedding. The

following question is still open.

Problem: Let M and N be von Neumann algebras. If M is finite and Lp(N)

embeds isometrically into Lq(M) for all 0 < q < p < 2, is N semi-finite?

As pointed out in the introduction, for 1 ≤ q < p ≤ 2, Theorem 3.1 cannot be

improved to the case of operator spaces. That is, if the von Neumann algebra R

is type-III then the (Banach) isomorphism in Theorem 3.1 can not be taken to

be a complete embedding. This can be seen from results of Xu ([40]): denote by

Cp (respectively, Rp) the subspace of the Schatten class Sp consisting of matrices

whose entries are zero except those in the first column (respectively, row). From

[40, Theorem 5.4, Theorem 5.6], if 1 ≤ q < p ≤ 2, there exists a type-III factor R

such that Cp and Rp embed completely isomorphically into Lq(R) but neither

Cp nor Rp embeds completely isomorphically into any noncommutative Lq-

spaces associated with semi-finite von Neumann algebras. In particular, Lq(R)
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does not completely embed into any Lr-space associated with any semi-finite

von Neumann algebra for 1 ≤ r < q.

As application of Theorem 3.1, we obtained in connection with a recent result

of Junge and Parcet [19] the following structural property of reflexive subspaces

of preduals of general von Neumann algebras:

Theorem 3.4: Let R be a von Neumann algebra. There exists a finite von

Neumann algebra M so that every reflexive subspace of R∗ Banach embeds

isomorphically into M∗.

Proof. Let X be a reflexive subspace of R∗. According to [19], there exists 1 <

p < 2 so that X embeds isomorphically into Lp(R⊕∞ R). Apply Theorem 3.1

to the von Neumann algebra R ⊕∞ R in order to get a finite von Neumann

algebra M so that Lp(R⊕∞ R) embeds isomorphically into M∗.

Appendix A. Reflexive subspaces of preduals of semi-finite von Neu-

mann algebras

In this section, we provide a noncommutative analog of Rosenthal’s classical

theorem [33]. A well-known result of Rosenthal on Banach structures of classical

Lp-spaces reads as follows:

Theorem A.1 ([33, Theorem 8]): If (Ω,F , µ) is a σ-finite measure space,

1 ≤ p < 2, and R is a closed linear subspace of Lp(µ). Then either R con-

tains a complemented copy of lp or there exists p′ > p such that R embeds

isomorphically into Lp
′

(µ). In particular, every reflexive subspace of L1(µ)

embeds isomorphically into Lr(µ) for some r > 1.

More precisely, if 1 < r < 2 and X is a subspace of L1(µ) which is of

Rademacher type strictly larger than r, then X embeds isomorphically into

Lr(µ).

Our aim is to provide suitable generalizations of Theorem A.1 for the setting

of noncommutative Lp-spaces associated with semi-finite von Neumann algebra.

Recall that such generalizations have been considered in the literature. The first

of such noncommutative generalizations is a result of Friedman [10] asserting

that for 1 ≤ p < ∞, any subspace of the Schatten class Sp either contains a

copy of lp or is isomorphic to a Hilbert space. A general result in the spirit

of Rosenthal’s theorem goes back to Pisier [28]. For the remaining of this
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section, we assume that M is semi-finite von Neumann algebra equipped with

a distinguished normal faithful semi-finite trace τ . The next theorem is the

principal result of this section.

Theorem A.2: Let 1 < r < 2 and X be a subspace of L1(M, τ) of Rademacher

type strictly larger than r. Then X embeds isomorphically into Lr(M, τ). In

particular, if R is a reflexive subspace of L1(M, τ) then there exists 1 < r < 2

so that R embeds isomorphically into Lr(M, τ).

Very recently, Theorem A.2 has been generalized by Junge and Parcet to

include the general Haagerup Lp-spaces (see [19]). The proof for the semi-finite

case given below, however, is much simpler in comparison with the general case

and therefore deserves a separate consideration.

Our approach follows essentially the argument of Pisier in [28] and is based

on the following factorization of operators on C∗-algebras. We only record here

the parts that we need.

Theorem A.3 ([28, Theorem 3.2]): Let 2 ≤ q < ∞ and Y be a Banach space

of Rademacher cotype q. If T : M → Y is a bounded linear operator then there

exist an absolute constant C > 0 and a positive functional ϕ ∈ M∗ such that

for every a ∈ M,

‖Ta‖ ≤ Cϕ(aa∗ + a∗a)1/q‖a‖1−(2/q)
∞ .

Moreover, if Y is a dual Banach space and T is weak*-continuous then ϕ can

be taken from M∗.

We start with the following structural lemma for subspaces of (semi-finite)

non commutative L1-spaces.

Main lemma: Let 1 < r < 2. If X is a subspace of L1(M, τ) of Rademacher

type r then there exists a positive operator b ∈ M with the following properties:

(i) ‖b‖∞ ≤ 1 and b−1 exists in L1(M, τ) + M;

(ii) the set bXb := {bxb;x ∈ X} is a closed linear subspace of Lr,∞(M, τ)

and is isomorphic to X .

Proof. Assume 1 < r < 2 and 2 < r′ < ∞ such that 1/r + 1/r′ = 1. Since

X is of Rademacher type r, it does not contain any copy of l1 and therefore

is strongly embedded into L1(M, τ) (see Proposition 2.4). Moreover, its dual

X∗ is of Rademacher cotype r′ (see, e.g., [24, Proposition 1.e.17, p. 79]). Let
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J : X → L1(M, τ) be the formal inclusion map (i.e. J(x) = x for all x ∈ X).

The adjoint map J∗ : M → X∗ satisfies the assumption of Theorem A.3.

Therefore there exist a constant C > 0 and ϕ ∈ M∗ such that for every a ∈ M,

(A.1) ‖J∗(a)‖ ≤ Cϕ(aa∗ + a∗a)1/r
′

‖a‖1−(2/r′)
∞ .

As L1(M, τ) is identified with the predual of M, there exists v ∈ L1(M, τ)+

such that ϕ(a) = τ(va) for every a ∈ M. Therefore, (A.1) becomes: for every

a ∈ M,

(A.2) ‖J∗(a)‖ ≤ Cτ
(
v(aa∗ + a∗a)

)1/r′

‖a‖1−(2/r′)
∞ .

Consider the operator v + 1 ∈ L1(M, τ) + M. Since v ≥ 0, the operator v + 1

is invertible and (v + 1)−1 ∈ M with ‖(v + 1)−1‖∞ ≤ 1. Define

(A.3) b := (v + 1)−1/2.

We claim that the operator b ∈ M as defined above satisfies the conclusion of

the main lemma. For this, consider the map M : L1(M, τ) ∩M → M as the

right and left multiplications by b, that is,

M(a) = bab ∀a ∈ L1(M, τ) ∩M.

The next lemma shows that the normal functional ϕ in (A.1) can be replaced

by the trace τ when we use the map J∗M in place of J∗.

Lemma A.4: There exists a constant C′ > 0 such that

‖J∗M(a)‖ ≤ C′‖a‖
2/r′

2 ‖a‖1−(2/r′)
∞ ,

for every a ∈ L1(M, τ) ∩M.

It suffices to verify this lemma for self-adjoint element of L1(M, τ) ∩ M.

Assume that a = a∗. Since b is also self-adjoint, |bab|2 = bab2ab ≤ ba2b. Then

from (A.2), we get

‖J∗M(a)‖ ≤ Cτ
(
v(ba2b)

)1/r′

‖bab‖1−(2/r′)
∞ ≤ Cτ

(
(bvb)a2)1/r

′

‖a‖1−(2/r′)
∞ .

Since bvb ≤ 1 by construction, the inequality in the statement is verified for

self-adjoint elements. The general statement easily follows with C′ = 2C. Thus

Lemma A.4 is verified.

We now proceed with the proof of the main lemma. It follows from Lemma A.4

and general interpolation technique (see, e.g., [3, p. 49]) that there is a constant



Vol. 163, 2008 NON-COMMUTATIVE Lp-SPACES 23

C” > 0 such that for every a ∈ L1(M, τ) ∩M,

(A.4) ‖J∗M(a)‖ ≤ C”‖a‖r′,1.

Since L1(M, τ)∩M is dense in Lr
′,1(M, τ), from (A.4), there exists an operator

L : Lr
′,1(M, τ) → X∗ which generates the following commutative diagram:

L1(M, τ) ∩M
M

−−−−→ M

i

y
yJ∗

Lr
′,1(M, τ)

L
−−−−→ X∗

where i is the inclusion map. Taking the adjoint maps, the duality (2.2) gives

X
J

−−−−→ L1(M, τ)

L∗

y
yM∗

Lr,∞(M, τ)
i∗

−−−−→ L1(M, τ) + M.

We observe first that M∗(y) = byb for every y ∈ L1(M, τ). Moreover, M∗J

is an isomorphism. Indeed, the map ∆ : L1(M) + M → M̃ defined by ∆(z) =

b−1zb−1 is continuous and ∆M∗J(x) = J(x) = x for all x ∈ X . Since X

strongly embeds into L1(M, τ), the map ∆M∗J is an isomorphism and so is

the map M∗J = i∗L∗. A fortiori, L∗ is an isomorphism of X into Lr,∞(M, τ).

To conclude the proof, it remains to verify that L∗(X) = bXb. To see this,

we observe that i∗ is again the inclusion map so for every x ∈ X , L∗(x) =

i∗L∗(x) = M∗J(x) = bxb as measurable operator. The proof of the main

lemma is complete.

Proof of Theorem A.2. Let X be a subspace of L1(M, τ) of Rademacher type

s > r. ¿From the main lemma, there exists b ∈ M with ‖b‖∞ ≤ 1 and bXb is a

closed subspace of Ls,∞(M, τ). We observe that bXb is also isomorphic to X

as a subspace of Ls,∞(M, τ) ∩ L1(M, τ). Indeed, the map Λ : Ls,∞(M, τ) ∩

L1(M, τ) → M̃ defined by y 7→ Λ(y) = b−1yb−1 is one to one and takes bXb

onto X . Since X is strongly embedded, Λ |bXb is an isomorphism. We conclude

that since Ls,∞(M, τ) ∩ L1(M, τ) ⊂ Lr(M, τ)(see, e.g., [24, p. 143]), strong

embedding again implies that bXb is a subspace of Lr(M, τ) isomorphic to X .

Assume now that R is a reflexive subspace of L1(M, τ) then from [16], R is

superreflexive and therefore it has non-trivial Rademacher type.

Extensions to the case 1 < p < 2 goes as follows:
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Corollary A.5: Let 1 < p < 2 then every subspace Y of Lp(M, τ) either

contains a complemented subspace isomorphic to lp, or Y embeds into Lr(M, τ)

for some r > p.

Proof. Assume that 1 < p < 2 and let Y be a subspace of Lp(M, τ). Then

from Proposition 2.4, either Y contains a complemented subspace isomorphic

to lp or Y is strongly embedded into Lp(M, τ). Let

pY := sup{r : Y is of Rademacher type r}.

We claim that if Y contains no (complemented) copy of lp (and therefore is

strongly embedded into Lp(M, τ)) then pY > p. Indeed, it is known from [25]

that lpY is finitely represented in Y . Therefore, if pY = p, then Y contains

lpn’s uniformly and by [13, Theorem 4.4], Y contains a copy of lp which is a

contradiction. Hence pY > p. Let ε > 0 and r > 0 so that p < r < r + ε < pY .

Then Y is of Rademacher type r+ε and we claim that Y embeds into Lr(M, τ).

The von Neumann algebra M admits a decomposition

M = M1 ⊕∞ M2

where M1 is a finite von Neumann algebra and M2 is a semi-finite properly

infinite von Neumann algebra (see for instance [34, Theorem 2.2.3]). Let τ1 be

a faithful normal tracial state on M1. Then

Lp(M, τ) ≈ Lp(M1, τ |M1
) ⊕p L

p(M2, τ |M2
)

≈ Lp(M1, τ1) ⊕p L
p(M2, τ |M2

)

≈ Lp(M1 ⊕∞ M2, τ1 ⊕∞ τ |M2
).

Therefore, the space Y can be viewed as a (strongly embedded) subspace of

the noncommutative space Lp(M1 ⊕∞ M2, τ1 ⊕∞ τ |M2
). Fix an increasing

sequence of finite projections (en)n≥1 in M2 with τ(en) < ∞ for every n ≥ 1

and en ↑n 1M2
. Define for every n ≥ 1,

Θn : Lp(M1⊕∞M2, τ1⊕∞τ |M2
) → Lp(M1⊕∞M2⊕∞M2, τ1⊕∞τ |M2

⊕∞τ |M2
)

by

Θn(x, y) := (x, eny, yen).

Similar argument as the one used in the proof of Proposition 2.5 above shows

that there exists n0 ∈ N so that Θn0
|Y is an isomorphism and Θn0

(Y ) is strongly

embeded into Lp(M1 ⊕∞ M2 ⊕∞ M2, τ1 ⊕∞ τ |M2
⊕∞ τ |M2

) (details of this

are left to the interested reader). Since τ1 is finite and τ(en0
) < ∞, it follows
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that Θn0
(Y ) ⊂ L1(M1⊕∞M2⊕∞M2, τ1⊕∞ τ |M2

⊕∞ τ |M2
). Moreover, since

M2 is properly infinite, L1(M2 ⊕∞ M2, τ |M2
⊕∞ τ |M2

) ≈ L1(M2, τ |M2
), we

conclude that Y is isomorphic to a subspace of L1(M, τ). The conclusion follows

immediately from Theorem A.2.

An immediate application of Proposition 3.2 extends Corollary A.5 to the

case of general von Neumann algebras.

Corollary A.6: Let R be a σ-finite von Neumann algebra and (N , ν) be

the pair of semi-finite von Neumann algebra with the normal, faithful semi-

finite trace ν from Proposition 3.2. If 1 < p < 2, then every subspace Y of

Lp(R) either contains a complemented subspace isomorphic to lp, or embeds

isomorphically into Lr(N , ν) for some r > p.

Proof. The proof follows the argument used in Corollary A.5. If Y does not

contain any complemented copy of lp then from [32, Theorem 5.1], we can

deduce as in the proof of Corollary A.5 that Y is of Rademacher type strictly

larger than p. Since Y embeds isomorphically into L1(N , ν), the conclusion

follows from Theorem A.2.

We conclude with a remark on the case of Schatten-classes. If M = B(H) is

the algebra of all bounded operators in the Hilbert space H, then the following

result (due to Friedmann [10] for 1 ≤ p < ∞) holds: for 0 < p < ∞, every

subspace of the Schatten-class Sp(H) either contain a further subspace equivalent

to lp or is isomorphic to a Hilbert space. For the range 0 < p ≤ 2, this follows

immediately from Proposition 2.4 above. Indeed, it is known that in this case

M̃ = B(H) and the measure topology coincides with norm operator topology

in B(H). Moreover, if 0 < p ≤ 2, Sp(H) ⊂ S2(H) and therefore every strongly

embedded subspace of Sp(H) is a closed subspace of S2(H). The range 2 < p <

∞ can be viewed as a particular case of the noncommutative generalization of

the classical Kadec-Pe lczynski theorem (see Corollary 2.8 above).
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